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Abstract The logistic modeling approach was used to

describe experimental viable cell density (X) and product

concentration (P) data from two industrial fed-batch

mammalian cell culture processes with maximum product

concentrations in the 3.0–9.4 g/l range. In both cases,

experimental data were well described by the logistic

equations and the resulting specific growth rate and protein

productivity profiles provided useful insights into the pro-

cess kinetics. Subsequently, sensitivity equations for both

the X and P models were analyzed which helped charac-

terize the influence of model parameters on X and P time

courses. This was augmented by conventional sensitivity

analyses where five values of each model parameter, 25%

apart, were used to generate X and P time courses. Finally,

results from sensitivity analysis were used to simulate

X and P time courses that were reflective of typical early-

and late-stage fed-batch cell culture processes. Different

combinations of the logistic model parameters were used to

arrive at the same final product concentration demonstrat-

ing the ability of the logistic approach to describe the

multitude of process paths that result in the same final

product concentration. Overall, the capability of the

logistic equations to well describe X and P data from fed-

batch cultures, coupled with their ability to simulate the

multitude of paths leading up to the desired cell density and

product concentration profiles, make them a useful tool

during mammalian cell fed-batch process development.
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Introduction

Fed-batch cultivation of mammalian cells continues to be

the method of choice for most commercial cell culture

processes [11]. This is primarily because the majority of

the licensed biopharmaceuticals are monoclonal antibodies

[2, 12–14] which are relatively stable under culture con-

ditions. Dramatic increases in antibody productivity as a

consequence of cell line and process optimization have

substantially driven down the cost of goods associated with

cell culture [10].

Accurate quantification of cell specific rates in fed-batch

cultures is a challenge with results often being influenced

by the analysis approach. Logistic modeling of mammalian

cell fed-batch cultures has been proposed as a robust

alternative to the discrete derivative and polynomial curve

fitting approaches for specific rate estimation [8] and the

associated computational approach has also been described

[6]. This approach results in robust time courses of specific

rates related to cell growth, nutrient consumption, metab-

olite production, and recombinant protein production. In

addition to providing valuable information on the culture

and experimental conditions being studied, cell specific

rates are inputs for metabolic flux analysis and accurate

estimates help ensure robust metabolic flux data. This is

especially important given the inherent error in experi-

mental measurements that will propagate into the flux

estimates through the specific rates [7].

An alternate application of the logistic modeling

approach is for a priori analysis of a cell culture system.
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Activities such as cell line development and preliminary

process optimization occur early in the development cycle

with limited information on cell performance. In the

absence of clear targets for bioreactor protein concentration

(based on material needs for toxicology and clinical trials),

there can be wasteful allocation of resources towards pro-

cess improvements which are perhaps best done once

clinical proof of concept (PoC) has been established

through human clinical trials. Moreover, the criticality of

rapid advancement of a therapeutic candidate to the PoC

stage has only been increasing in light of increased overall

process development costs from $802 million per new drug

in 2004 [4, 5] to $1,214 million in 2010 [1]. Under these

circumstances, it is beneficial to identify desirable ranges

for key variables such as specific protein productivity and

maximum cell density in fed-batch cultures that are aligned

with material needs for human clinical trials. This can help

ensure optimal allocation of time and resources for each

drug candidate and also facilitate the evaluation of addi-

tional candidate molecules, thereby maximizing benefit to

patients.

Application of the logistic approach to describe exper-

imental X and P data and for simulating their time courses

is presented in this study. Sensitivity analysis was per-

formed to determine the impact of each of the model

parameters on X and P time courses. Subsequently, the

application of this approach to simulate typical early- and

late-stage mammalian cell fed-batch processes is presented.

Theory

Viable cell density

A four-parameter logistic equation has been used to

describe the dynamics of mammalian cell growth and death

in a fed-batch bioreactor [8]

X ¼ a1

ea2t þ a3e�a4t
ð1Þ

where X is the viable cell density, a1–a4 are model

parameters, and t is time. Biological interpretations of the

model parameters can be derived by exploring the limiting

cases of Eq. 1. For instance, setting a3e�a4t ¼ 0 results in

X ¼ a1e�a2t, an exponential decline equation such that a2 is

analogous to the maximum death (kdmax). Alternatively,

setting ea2t ¼ 0 reduces Eq. 1 to X ¼ a1ea4t=a3, an

exponential growth equation, implying that a4 is analogous

to lmax, the maximum growth rate. A modification of Eq. 1 to

reflect the initial condition (t = 0) in a fed-batch experiment

results in the following

X0 ¼
a1

1þ a3

ð2Þ

where X0 is the cell density at t = 0. In addition, an

expression for tmax, the time required to reach maximum

cell density in a fed-batch process, can be obtained by

setting the first derivative of Eq. 1 to zero

tmax ¼
1

a2 þ a4

ln
a3 a4

a2

� �
ð3Þ

While parameters a2 and a4 are directly associated with

classical descriptors of cell death and growth rates, such a

direct interpretation of parameters a1 and a3 is not

possible. An understanding of their impact on the cell

density time course, however, is very important, and can

be done using sensitivity equations, which for Eq. 1 can

be derived as

dX

da1

¼ X

a1

ð4Þ

dX

da2

¼ � X2

a1

� �
tea2t ð5Þ

dX

da3

¼ � X2

a1

� �
e�a4t ð6Þ

dX

da4

¼ X2

a1

� �
a3te�a4t ð7Þ

Product concentration

The accumulation of product (P) over the course of a fed-

batch experiment can be described by the logistic growth

equation [8]

P ¼ b1

1þ b2e�b3t
ð8Þ

where b1–b3 are the model parameters. The parameter b1 is

analogous to Pmax, the maximum product concentration,

and this can be derived by setting the derivative of Eq. 8 to

zero. Parameter b3, which is in the exponential term of

Eq. 8, is analogous to a rate constant for product

concentration increase. The impact of parameters b1–b3

on the dynamics of P can be analyzed from the sensitivity

equations for Eq. 8

dP

db1

¼ P

b1

ð9Þ

dP

db2

¼ � P2

b1

� �
e�b3t ð10Þ

dP

db3

¼ P2

b1

� �
b2teb3t ð11Þ
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Materials and methods

Analysis of experimental data

Cell density and product concentration data from two

recently published antibody-producing industrial fed-batch

CHO cell cultures [3, 9] were used to illustrate the appli-

cability of the logistic equations to describe such data sets.

In the first study, the lead CHO cell line expressing human

IgG1 MAb 4A1 was evaluated both in 500-ml shake flasks

and 2-l bioreactors. While a hydrolysate-containing feed

was used in shake flask cultures, a chemically defined feed

was used in the 2-l bioreactor and final product concen-

trations in the shake flask and bioreactor cultures were 3.0

and 4.1 g/l, respectively. Cell density and product con-

centration data from both the shake flask and bioreactor

cultures were analyzed using the logistic equations. In the

second study, CHO cells were used for antibody production

in fed-batch cultures and cell density and product con-

centration data from two rounds of process development

were analyzed using the logistic equations.

Given the nonlinear dependence of X and P on param-

eters a1–a4 and b1–b3 in Eqs. 1 and 8, respectively, esti-

mation of logistic parameters was performed using

nonlinear least squares. Initial estimates of parameters

a1–a4 and b1–b3 were obtained using linearized versions of

Eqs. 1 and 8 as described earlier [6]. These initial estimates

were subsequently used to obtain the final estimates by

minimizing the sum of squares error (SSE) between

experimental and model fit data

SSE ¼
Xn

i¼1

½ðxmeasÞi � ðxfitÞi�
2 ð12Þ

where (xmeas)i is the ith experimental cell density/product

concentration value and (xfit)i the ith model fitted value in a

total of n observations.

Logistic equation sensitivity analysis

Results from logistic modeling of the shake flask data [3]

were used as the basis for sensitivity analysis. Fitting Eq. 1

to the viable cell density data set resulted in a1–a4 estimates of

45.6 9 106 cells/ml, 0.16 day-1, 62.4, and 0.48 day-1,

respectively, while fitting Eq. 8 to the product concentration

data resulted in b1–b3 estimates of 3.2 g/l, 84.7, and

0.57 day-1, respectively. These parameter estimates were

used to generate the sensitivity curves for X and P as defined

by Eqs. 4–7 and 9–11, respectively. Subsequently, for each of

a1–a4 and b1–b3, two points that were 25% apart were chosen

on either side of the above estimated values resulting in a total

of five values (e.g., the five values for a1 were 22.8, 34.2, 45.6,

57, and 68.4 9 106 cells/ml). A single parameter was varied

at a time resulting in a total of five X or P profiles per

parameter. An examination of these families of curves helped

characterize the sensitivity of X and P to changes in a1–a4

and b1–b3, respectively.

Simulation of cell density and product concentration

time courses

The utility of the logistic approach to perform a priori sim-

ulations of X and P time courses that could guide process

development activities was demonstrated both for early- and

late-stage fed-batch processes. The choice of the logistic

parameters was in line with typical values observed in

mammalian cell fed-batch cultures. A culture duration of

14 days was assumed with ranges of 0.4–0.6 day-1 and

0.1–0.15 day-1, respectively, for maximum growth and

death rates. In addition maximum cell densities ranges were

8–12 9 106 cells/ml in a typical early-stage process while

higher values of 15–20 9 106 cells/ml were assumed for

late-stage processes. For final product concentration, the

variable of highest interest, values of 2 and 7 g/l were

assumed for early- and late-stage processes, respectively.

Two sets of logistic variables (a1–a4 and b1–b3) corre-

sponding to early- and late-stage processes, respectively, and

which were subject to the above constraints are shown in

Table 1. Using these Table 1 values, we generated two sets

of X and P time courses such that similar final product con-

centrations were attained but with varying cell density, cell

growth, and protein productivity time courses. The objective

of this exercise was to demonstrate that the multitude of paths

that lead up to an early- or late-stage fed-batch process could

be simulated by the logistic approach.

Results

Analysis of experimental data

Time courses of viable cell density data for CHO cells

expressing human IgG1 MAb 4A1 in 500-ml shake flasks

Table 1 Logistic parameters used for simulating early- and late-stage

fed-batch processes

Parameter Early-stage process Late-stage process

E1 E2 L1 L2

a1 (106 cells/ml) 50.5 50.5 50.5 50.5

a2 (day-1) 0.15 0.15 0.1 0.1

a3 100 100 100 500

a4 (day-1) 0.4 0.6 0.7 0.7

b1 (g/l) 2.0 2.0 7.0 7.0

b2 100 300 500 900

b3 (day-1) 0.5 0.7 0.7 0.7
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and 2-l bioreactors are shown in Fig. 1a along with the best

fit lines from Eq. 1. In both cases, the viable cell density

(VCD) data were well described by Eq. 1 and cell specific

growth rates calculated as described before [8] and are also

shown in Fig. 1a. Time profiles of product concentration

are shown in Fig. 1b along with the best fit lines from

Eq. 8. Similar to VCD, the product concentration data sets

were very well described by Eq. 8 resulting in smooth

specific productivity profiles (Fig. 1b).

Values of the logistic parameters corresponding to the

best fits in Fig. 1 are shown in Table 2 along with some

additional parameters. The biggest difference in the Fig. 1a

VCD profiles was the higher maximum cell density in the

bioreactor. The higher growth rates in the bioreactor are

best reflected in the a4 values which were 0.65 and

0.48 day-1 for the bioreactor and shake flask, respectively,

and were essentially the same as their maximum growth

rates (0.64 and 0.47 day-1, Table 2). No changes were

seen in a2 which was virtually identical to the maximum

death rate (Table 2). The higher Xmax value for the biore-

actor data was an accurate representation of the experi-

mental observations (Fig. 1a).

Very similar product concentration profiles were seen

for ca. 9 days in Fig. 1b after which higher values were

seen in the bioreactor. The final shake flask and bioreactor

concentrations of 3.0 and 4.1 g/l, respectively, were

reflected in their respective b1 values of 3.2 and 4.3 g/l

(Table 2) consistent with b1 being an indicator of the

maximum product concentration [8]. Higher b2 values

were seen for the bioreactor data (184.6 vs. 84.7) while b3

was slightly higher (0.60 vs. 0.57 day-1) in the

bioreactor.

Time profiles of an antibody-producing cell line (cell

line A in [9] are shown in Fig. 2a at two rounds (rounds 1

and 3) of process development. The round 3 data were

characterized by higher maximum cell density (21.7 vs.

19.7 9 106 cells/ml) and lower values of all four Eq. 1

parameters (Table 3). Despite lower initial growth rates,

the round 3 VCD data after 8 days were consistently higher

than those for round 3 and this was primarily due to a lower

death rate (a2 = 0.07 vs. 0.11 day-1 for round 1 data).

Unlike in Fig. 1a where higher cell densities were associ-

ated with higher growth rates, lower cell death rates

(despite lower growth rates) were responsible for higher

cell densities in Fig. 2a. This further highlights the multi-

tude of paths that can result in a cell density increase and

the ability of the logistic framework to identify them.

Fig. 1 Cell density, growth rate, product concentration, and specific

productivity data for antibody-producing CHO cells in shake flask and

bioreactor culture. The points for cell density and product concen-

tration are experimental data [3] and the lines are fits from Eqs. 1 and

8, respectively. Growth rate and specific productivity were computed

from the logistic fits as described before [8]. a Shake flask cell density

(filled circles); bioreactor cell density (open circles); shake flask

growth rate (filled triangles); bioreactor growth rate (open triangles).

b Shake flask product concentration (filled circles); bioreactor product

concentration (open circles); shake flask specific productivity (filled
triangles); bioreactor specific productivity (open triangles)

Table 2 Logistic parameters and related variables for CHO cells

producing human IgG1 MAb 4A1 in shake flask and bioreactor

cultures

Parameter Shake flask Bioreactor

Viable cell density

a1 (106 cells/ml) 45.6 67.7

a2 (d-1) 0.16 0.16

a3 62.4 236.8

a4 (d-1) 0.48 0.65

tmax (d) 8.1 8.4

Xmax (106 cells/ml) 9.2 13.7

lmax (d-1) 0.47 0.64

kdmax (d-1) 0.15 0.16

Product concentration

b1 (g/l) 3.2 4.3

b2 84.7 184.6

b3 (d-1) 0.57 0.60

Pmax (g/l) 3.0 4.1

Avg. qP (pg/cell-d) 38.2 36.5

Max. qP (pg/cell-d) 51.4 47.6

The associated time profiles of viable cell density and product con-

centration (data from [3]) are shown in Fig. 1
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Product concentration data for the round 1 and round 3

processes are shown in Fig. 2b along with the logistic fits

and resulting qP values. The b1 values were 4.4 and 10.4 g/l,

respectively, consistent with maximum product concentra-

tions of 4.2 and 9.8 g/l. The values for b3 were similar for

both data sets (0.41 and 0.38 day-1) while b2 was higher for

the round 3 process, similar to that in Fig. 1b. Overall, the

data in Figs. 1 and 2 suggest that logistic parameters

(especially a2 and a4 in Eq. 1 and b1 and b3 in Eq. 8) for

industrial fed-batch processes provide valuable insights into

the kinetics of cell density and product concentration time

courses and can help rationally direct process development

activities.

Sensitivity analysis

The shake flask data set (Fig. 1) for CHO cells expressing

human IgG1 MAb 4A1 served as the basis for sensitivity

analysis. The sensitivity curves as defined by Eqs. 4–7 and

9–11 are described first followed by results from varying

a1–a4 and b1–b3 around the Table 2 values which resulted

in five time courses of X or P for each parameter.

Viable cell density

The a1–a4 values for the shake flask data from Table 2

were used and the resulting sensitivity curves as defined by

Eqs. 4–7 are shown in Fig. 3 along with the X time course.

The sensitivity of a1 follows the X time course (Fig. 3a)

consistent with Eq. 4. Parameter a2 does not impact X in

the initial phase (the first 4 h in Fig. 3b) but subsequently

has an inverse relationship. The parameter a3 sensitivity

curve has a decreasing followed by an increasing trend and

levels off close to zero after ca. 10 days (Fig. 3c). The

sensitivity curve for parameter a4 has an increasing fol-

lowed by a decreasing trend with values approaching zero

towards the end of the culture (Fig. 3d).

Results from varying a1–a4 around the Fig. 3 values are

shown in Fig. 4. Increasing a1 resulted in an increase in

X values over the entire time course (Fig. 4a), consistent

with the Fig. 3a observation where the sensitivity curve for

a1 followed the entire X time course. The largest impact of

a2 was in the 6- to 14-day period where higher a2 values

reduced the maximum cell density that was attained by the

culture (Fig. 4b). This is consistent with the Fig. 3b sen-

sitivity curve and is also expected because a2 is the max-

imum cell death rate. Parameter a3 had an inverse impact

on the cell density curve in the 0- to 10-day phase (Fig. 4c),

consistent with the prediction from Fig. 3c. From Fig. 4d,

Fig. 2 Cell density, growth rate, product concentration, and specific

productivity data for antibody-producing CHO cells at two rounds of

process optimization. The points for cell density and product

concentration are experimental data [9] and the lines are fits from

Eqs. 1 and 8, respectively. Growth rate and specific productivity were

computed from the logistic fits as described before [8]. a Round 1 cell

density (filled circles); round 3 cell density (open circles); round 1

growth rate (filled triangles); round 3 growth rate (open triangles).

b Round 1 product concentration (filled circles); round 3 product

concentration (open circles); round 1 specific productivity (filled
triangles); round 3 specific productivity (open triangles)

Table 3 Logistic parameters and related variables for antibody-pro-

ducing CHO cells during two rounds of process optimization

Parameter Round 1 Round 3

Viable cell density

a1 (106 cells/ml) 57.2 48.9

a2 (d-1) 0.11 0.07

a3 73.7 53.6

a4 (d-1) 0.64 0.55

tmax (d) 8.0 9.6

Xmax (106 cells/ml) 19.7 21.7

lmax (d-1) 0.63 0.54

kdmax (d-1) 0.11 0.07

Product concentration

b1 (g/l) 4.4 10.4

b2 62.3 117.7

b3 (d-1) 0.41 0.38

Pmax (g/l) 4.20 9.8

Avg. qP (pg/cell-d) 19.1 33.3

Max. qP (pg/cell-d) 27.4 54.4

The associated time profiles of viable cell density and product con-

centration (data from [9]) are shown in Fig. 2
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the impact of parameter a4 was seen over a large part of the

cell density curve and the cell density profiles converged

towards the very end of the culture, consistent with pre-

dictions from Fig. 3d.

Two additional parameters, the maximum cell density

(Xmax) and the time required to reach the maximum cell

density (tmax), are also of interest in a fed-batch culture.

While tmax can be determined from Eq. 3, Xmax can be

determined by substituting t = tmax in Eq. 1. The impact of

changes in parameters a1–a4 on Xmax is shown in Fig. 5.

Increase in a1 had a proportional increase in Xmax (Fig. 5a)

while an increase in a2, the death rate, decreased Xmax as

expected (Fig. 5b). Parameter a3 was inversely related to

Xmax but the dependence was not as pronounced as with the

other parameters (Fig. 5c). Parameter a4, the growth rate,

was positively correlated with Xmax and also had a high

impact on Xmax (Fig. 5d).

Figure 6 shows tmax values as a function of changes in

parameters a1–a4. Parameter a1 had no impact on tmax

(Fig. 6a) while a decreasing trend was seen for an increase in

parameter a2 (Fig. 6b), consistent with a2 being the maxi-

mum death rate. A slight tmax increase was seen with

increasing a3 (Fig. 6c) while a substantial tmax decrease was

seen with increase in a4, the maximum growth rate (Fig. 6d).

Product concentration

The sensitivity curves for product concentration were

computed from Eqs. 9–11 and are shown in Fig. 7 along

with the product concentration time course. Similar to the

impact of a1 on X in Fig. 3a, the sensitivity curve for

parameter b1 followed the time course of P (Fig. 7a),

consistent with Eq. 9 and can thus be expected to impact

the entire P versus t curve. Parameter b2 was negatively

correlated with P and the sensitivity curve was character-

ized by a decreasing followed by an increasing trend that

approached zero towards the end of the culture (Fig. 7b).

Parameter b3 was positively correlated with P and was

characterized by an increasing followed by a decreasing

sensitivity curve (Fig. 7c).

Actual product concentration time profiles for varying

values of b1–b3 (two points on either side of the Table 2

values for shake flask culture, each 25% apart) are shown

in Fig. 8. Variable b1 has a substantial impact on the entire

time course of P, consistent with Fig. 7a, and is also rep-

resentative of the maximum product concentration. Vari-

able b2 negatively impacts the product concentration

profiles and the highest impact is seen between 2 and 12 h

(Fig. 8b), consistent with the Fig. 7b sensitivity curve.

Variable b3 has a positive impact on P which is pronounced

after 2 h (Fig. 8c) in line with the observations in Fig. 7c.

Simulation of X and P in fed-batch cultures

Early-stage development projects are typically associated

with non-optimal cell lines, medium formulations, and

culture conditions and usually have maximum cell densi-

ties in the 8–12 9 106 cells/ml range. Suboptimal culture

conditions can result in lower cell growth rate and/or

higher cell death rates due to nutrient limitations. X and

P time courses along with those for growth rate and spe-

cific productivity for two representative early-stage

Fig. 3 Sensitivity curves for

the Eq. 1 parameters a1–a4 (at

a1 = 45.6 9 106 cells/ml,

a2 = 0.16 day-1, a3 = 62.4,

and a4 = 0.48 day-1) computed

from Eqs. 4–7, respectively,

along with the corresponding

X time course
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processes E1 and E2 were generated using Table 1 a1–a4

and b1–b3 values and are shown in Fig. 9a, b. While both

processes resulted in a final product concentration of 2 g/l

(Fig. 9b), there were differences in the cell density, growth,

product concentration, and productivity profiles. For

instance, increasing a4 from 0.4 to 0.6 day-1 in Eq. 1

Fig. 4 Sensitivity of X to

changes in a1–a4. Baseline

parameter values are from

Fig. 3 with two values on either

side, each 25% apart. The arrow
indicates the direction of

parameter value increase

Fig. 5 Changes in Xmax as a

function of changes in

parameters a1–a4. Xmax was

most sensitive to changes in a1

followed by those in a2 and a4.

Parameter a3 had the least

impact on Xmax
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resulted in an Xmax increase from 8 to 12.1 9 106 cells/ml

and was also associated with a tmax reduction from 10.2 to

8 days (Fig. 9a), consistent with the information in Figs. 3–6.

Because of this cell number increase, lower average specific

productivities (16.3 vs. 26.3 pg cell-1 day-1) were adequate

for the high cell density case to reach the final product

concentration of 2 g/l (Fig. 9b). Increases in b2 (100–300)

and b3 (0.5–0.7 day-1) counteracted each other as suggested

by the Fig. 7 sensitivity curves such that the overall impact on

the product concentration profile was small (Fig. 9b). The

corresponding qP profiles, however, were much different and

this was largely due to the difference in the Fig. 9a VCD

profiles.

Data representative of a more mature fed-batch pro-

cess with final product concentrations of 7 g/l are shown

in Fig. 9c, d for late-stage processes L1 and L2 using

a1–a4 and b1–b3 values from Table 1. A fivefold increase

in a3 from 100 to 500 resulted in an Xmax decrease from

19.5 to 15.9 9 106 cells/ml and an increase in tmax from

8.2 to 10.2 days (Fig. 9c), consistent with the sensitivity

predictions in Fig. 3–6. Because a2 and a4 were

unchanged, the terminal and initial growth rate values

were similar for both data sets in Fig. 9c and were very

close to their respective a2 and a4 values of 0.1 and

0.7 day-1. An increase in b2 from 500 to 900 had a

minimal impact on the product concentration profile in

Fig. 9d, consistent with the sensitivity curves in Fig. 8b.

Like in Fig. 9b, the specific productivity profiles in

Fig. 9d were different with the higher cell density data

associated with lower average qP values (33.6 vs.

56.3 pg cell-1 day-1).

Overall, the Fig. 9 data reinforce common knowledge

that multiple process development approaches that mani-

fest as varying cell density, growth, and protein production

time profiles can result in the desired final product con-

centration. The logistic framework presented in this study

allows a priori visualization of these multiple paths and can

help direct process development activities such that the

desired product concentrations are reached with minimal

time and resource use.

Discussion

The logistic equations provide a means for modeling cell

density and product concentration time courses in mam-

malian cell fed-batch reactors. Despite the non-mechanistic

nature of the logistic equations, time profiles are logically

constrained (cell density time courses are characterized by

increasing followed by decreasing trends; product con-

centration time courses are characterized by increasing

values with an asymptotic maximum) which makes them

an ideal candidate for simulating cell density and product

concentration trends. Such simulations are helpful in the

development of both early- and late-stage fed-batch pro-

cesses where product requirements are substantially

Fig. 6 Changes in tmax as a

function of changes in

parameters a1–a4. tmax was most

sensitive to changes in a4,

followed by those in a2 and a3

and was independent of a1
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different. The conventional approach for determining

process development benchmarks is primarily focused on

product concentration, which, albeit pragmatic and simple,

does not taken into account the multitude of paths that can

lead to that target. Simulations using the logistic equations

can help determine a priori estimates for cell growth and

death rates and specific productivity, or combinations

thereof, which can result in the desired final product con-

centration. For instance, if a target final product concen-

tration of 1–2 g/l is desired, selection of a clone with an

average qP of 10–20 pg cell-1 day-1 should be adequate if

cell densities on the order of 10 9 106 cells/ml can be

reached during the course of the cultivation. This insight

can help streamline cell line development by rational

allocation of resources because time-consuming steps such

as amplification or screening of additional clones in the

pursuit of a higher producer can be avoided. Alternatively,

if much higher product concentrations are desired and cell

line changes cannot be made, these simulations can help

medium and process optimization efforts by providing

targets for growth and death rates and protein productivity.

Despite the intuitiveness of the simulations presented in

this study, there are limitations. Not all parameter combi-

nations will result in time courses of X, P, l, and qP that are

Fig. 7 Sensitivity curves for the Eq. 8 parameters b1–b3 (at

b1 = 3.2 g/l, b2 = 84.7, and b3 = 0.57 day-1) computed from

Eqs. 9–11, respectively, along with the corresponding P time course

Fig. 8 Time courses of product concentration for changes in

parameters b1–b3. Baseline parameter values are from Fig. 7 with

two other values on either side, each 25% apart. The arrow indicates

the direction of parameter value increase
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biologically representative. It is thus important to under-

stand the sensitivity of X and P to parameters a1–a4 and b1–

b3 as described in Figs. 3–8 which can guide the user

towards rational use of the logistic models for X and

P simulation. Furthermore, time courses resulting from any

simulation exercise must be carefully evaluated to ensure

consistency with published work on mammalian cell fed-

batch cultures and previous experience with the cell line of

interest. Every attempt must be made to arrive at first

principles based interpretation of the time courses. When

used judiciously, the logistic equation based simulation

approach presented in this study can be a useful tool for

supporting fed-batch cell culture process development.

Conclusions

In summary, logistic equations were used to simulate time

courses of viable cell density, growth rate, product con-

centration, and cell specific protein production for mam-

malian cells in fed-batch culture. The resulting time

profiles were logically constrained by the logistic equations

and scenarios reflective of early- and late-stage cell culture

processes could be readily simulated by an appropriate

choice of model parameters. Such simulations can guide

process development activities by helping define rational

targets for cell growth and protein productivity. By pro-

viding additional insights into the dynamics of cell growth

and protein production over the entire duration of the

culture, the simulations are an improvement over the cur-

rent paradigm where only final product concentration in the

bioreactor drives process development activities. Through

thoughtful selection of model parameters and a careful

analysis of the resulting time course, it is possible to have

some general kinetic understanding of the system being

studied. The ease with which this can be done using the

logistic equations should help accelerate both early- and

late-stage fed-batch cell culture process development

activities.
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